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Abstract

This paper presents a numerical method for modeling the micromechanical behavior and macroscopic properties of
fiber-reinforced composites and perforated materials. The material is modeled by a finite rectangular domain containing
multiple circular holes and elastic inclusions. The rectangular domain is assumed to be embedded within a larger cir-
cular domain with fictitious boundary loading represented by truncated Fourier series. The analytical solution for the
complementary problem of a circular domain containing holes and inclusions is obtained by using a combination of the
series expansion technique with a direct boundary integral method. The boundary conditions on the physical external
boundary are satisfied by adopting an overspecification technique based on a least squares approximation. All of the
integrals arising in the method can be evaluated analytically. As a result, the elastic fields and effective properties can be
expressed explicitly in terms of the coefficients in the series expansions. Several numerical experiments are conducted to
verify the accuracy and efficiency of the numerical method and to demonstrate its application in determination of the
macroscopic properties of composite materials.
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1. Introduction

Fiber-reinforced composites and perforated materials are widely used in engineering structures. Some of
these materials (for example, unidirectional fiber-reinforced composites, or thin-plate solids consisting of
disks or holes) can be represented as two-dimensional linearly elastic solids containing multiple holes
and locally isotropic inclusions. The inclusions refer to the fibers or disks in composite materials and the
holes are either due to the inherent porosity of the material or a result of the manufacturing process (i.e.
caused by drilling). The holes and inclusions cause significant stress disturbance, especially when they
are closely spaced, leading to a considerable change of the macroscopic properties as well as the microme-
chanical behavior of the material. Thus, it is of engineering importance to calculate the elastic fields and
effective properties of a two-dimensional solid containing multiple holes and inclusions. In the work pre-
sented in this paper, we consider the particular but practically important case in which the holes and inclu-
sions are circular.

This paper presents an extension of the previous work of the authors on modeling composite materials
using a direct boundary integral approach, which was first presented by Mogilevskaya and Crouch (2001)
for multiple circular inclusions in an infinite plane. This approach was later extended to include circular
holes as well as cracks (e.g. Wang et al., 2001, 2003a,c) and to consider a finite domain with a circular
boundary (Wang et al., 2003c). These analyses combine the series expansion technique with a direct bound-
ary integral method in which complex singular and hypersingular integrals are written directly in terms of
the actual boundary tractions, displacements, and—for cracks—displacement discontinuities (Linkov and
Mogilevskaya, 1994). The unknown boundary parameters are expressed globally in terms of series expan-
sions of orthogonal functions (i.e. Fourier series for circular boundaries and Chebyshev polynomials for
cracks). All the integrals involved in the analyses are evaluated analytically and numerical errors only come
from truncation of the series. After incorporating a fast multipole algorithm, the approach is capable of
solving large scale practical problems involving thousands of objects (e.g. Wang et al., in press). Because
of its analytic nature, the approach has advantages in accuracy and efficiency over some other numerical
methods [for example, the series expansion method (Isida and Sato, 1984; Wang et al., 2000), the finite ele-
ment method (Meguid, 1986; Wacker et al., 1998), and the standard boundary element method (Eischen
and Torquato, 1993; Greengard and Helsing, 1998; Liu et al., 2000; Kong et al., 2002)] for the particular
problem under consideration.

In this paper, we consider a finite domain of rectangular or square shape. Such a model can be used to
design laboratory experiments for direct measurement of micromechanical behavior and macroscopic prop-
erties of composite materials. For a domain of such shape, however, the problem can no longer be solved
analytically. In order to retain the main features of our approach, we suggest a simple embedding technique
that is well tailored for this particular type of problem. Instead of solving the problem directly, we embed
the physical solution domain into a circular disc and apply fictitious loading on the boundary so as to sat-
isfy the prescribed conditions on the physical external boundary. The subsequent analysis is based on the
analytical solution we have obtained for multiple circular inclusions and holes in a finite circular domain
(Wang et al., 2003c).

The term ‘‘embedding method’’ is used in the literature to describe different numerical techniques, all of
which consider the physical solution domain as a part of a larger fictitious domain with simple geometry. In
one of these approaches by Boley and collaborators (Boley, 1961; Boley and Yagoda, 1971), the fictitious
boundary conditions on the artificial boundary are found by satisfying the conditions on the real physical
boundary. In our approach, we use the term ‘‘embedding method’’ in the same sense as Boley (1961) and
Boley and Yagoda (1971) with the embedding domain chosen to be circular. Following Wang et al. (2003c),
the fictitious tractions and displacements on the boundary of the embedding domain and other unknown
boundary functions are approximated by truncated complex Fourier series. As a result, all the integrals in-
volved in the analysis are evaluated analytically. The stress and displacement fields everywhere inside the
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circular domain can be expressed explicitly in terms of analytic functions of the coefficients in the series
expansions. The boundary conditions for the inclusions and holes are satisfied analytically, and for the ac-
tual external boundary are satisfied by adopting an overspecification technique based on a least squares
approximation. An iterative algorithm is developed to implement the numerical scheme outlined above.
Convergence of the algorithm is independent of the initial choice of the fictitious tractions and displace-
ments. Global approximation of the boundary parameters without boundary discretization and analytical
evaluation of all the integrals yields high accuracy of the numerical results with relatively low computa-
tional cost.

In the succeeding sections of this paper, we give the theoretical formulation of the embedding technique
applied to problems of multiple circular holes and elastic inclusions in a finite rectangular domain, as well
as its numerical implementation using the solution obtained for the counterpart of the subject problem in a
circular domain. An iterative algorithm is described to obtain the numerical solution. Several numerical
experiments are described to verify the accuracy and effectiveness of the method and to demonstrate its
application in determining the effective properties of fiber-reinforced composites. Finally, some concluding
remarks are made regarding the advantages and possible extensions of the work.
2. Problem statement

We consider a linearly elastic finite rectangular domain D containing an arbitrary assortment nonover-
lapping circular holes and elastic inclusions (Fig. 1). The inclusions are assumed to be perfectly bonded with
the matrix, although this restriction can easily be relaxed by incorporating spring-type interface conditions
(Mogilevskaya and Crouch, 2002) or adding an interphase layer (Mogilevskaya and Crouch, 2004). The
holes are either traction free or loaded with uniformly distributed normal pressure. The entire region is sub-
jected to arbitrary (but equilibrated) loading on the external boundary Ce.

The numbers of inclusions and holes inside the domain are Np and Nh, respectively. The elastic proper-
ties of the inclusions (shear moduli lp

j and Poisson�s ratios mpj , j = 1, . . . ,Np) are arbitrary, and different from
the elastic constants of the matrix lm and mm. Let R

p
j , z

p
j , and Cp

j denote the radius, center, and boundary of
the jth inclusion; let Rh

j , z
h
j , and Ch

j denote these same quantities for the jth hole; and let pj denote the con-
stant normal traction acting on Ch

j (pj < 0 for compression). The regions enclosed by contours Cp
j and Ch

j are
denoted by Dp

j and Dh
j , respectively. We define the following unions
Fig. 1. Multiple circular holes and inclusions in a finite rectangular domain.
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Cp ¼
[Np

j¼1
Cp

j ; Ch ¼
[Nh

j¼1
Ch

j and Dp ¼
[Np

j¼1
Dp

j ; Dh ¼
[Nh

j¼1
Dh

j : ð1Þ
The direction of travel is clockwise for holes Ch
j (j = 1, . . . ,Nh), and counter-clockwise for inclusions Cp

j

(j = 1, . . . ,Np) and the finite external boundary Ce. The unit tangent s points in the direction of travel
and the unit outward normal n points to the right of this direction. Any point in the domain is identified
by the complex coordinate z = x + iy ði ¼

ffiffiffiffiffiffiffi
�1

p
Þ. The stresses and displacements in the finite region are to

be determined.
3. Theoretical formulation

3.1. Potential representation

The displacements and stresses at any point z inside the solution domain can be calculated using the
Kolosov–Muskhelishvili formulae (Muskhelishvili, 1963), which are expressed in terms of two analytic
functions u(z) and w(z) as follows:
uxðzÞ þ iuyðzÞ ¼
1

2l
juðzÞ � zu0ðzÞ � wðzÞ
h i

;

rxx þ ryy ¼ 4Reu0ðzÞ;
ryy � rxx þ 2irxy ¼ 2 zu00ðzÞ þ w0ðzÞ½ 	:

ð2Þ
In these equations, Muskhelishvili�s parameter j is 3 � 4m for plane strain and (3 � m)/(1 + m) for plane
stress; l and m are the shear modulus and Poisson�s ratio; ux(z) and uy(z) are the displacements; and rxx,
ryy, and rxy are the components of the stress tensor.

The Kolosov–Muskhelishvili potentials u(z) and w(z) for more general problems of a finite or infinite
plane containing inclusions, holes, and cracks of arbitrary shapes have been obtained in (Linkov and Mogi-
levskaya, 1998) using a superposition procedure described by Linkov (1983). They can be written in terms
of the physical boundary parameters (i.e. boundary tractions, displacements, and displacement discontinu-
ities) in the form of integral expressions as:
uðzÞ ¼ �g½K1rðzÞ � K2DuðzÞ	;
wðzÞ ¼ �g½K3rðzÞ þ K4DuðzÞ	;

ð3Þ
where g is a constant defined as
g ¼ 2l
j þ 1

and
l ¼ lp

j ; j ¼ jp
j ; z 2 Dp

j ;

l ¼ lm; j ¼ jm; z 2 D� ðDp [DhÞ

(
ð4Þ
and the integral operators Kk (k = 1, . . . , 4) acting on function f(z) are given by
K1f ðzÞ ¼
1

2pi

Z
C
a1f ðsÞ lnðs � zÞds;

K2f ðzÞ ¼
1

2pi

Z
C

f ðsÞ
s � z

ds;

K3f ðzÞ ¼
1

2pi

Z
C
a1

f ðsÞ
s � z

sds �
Z

C
ða1 � a3Þf ðsÞ lnðs � zÞds

� �
;

K4f ðzÞ ¼
1

2pi

Z
C

f ðsÞ
s � z

ds �
Z

C

f ðsÞ
s � z

ds þ
Z

C

f ðsÞ
ðs � zÞ2

sds

" #
;

ð5Þ
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where C is the union of all boundaries (in our case C = Ce [ Cp [ Ch); r = rn + irs is the complex-valued
boundary traction (in the local coordinate system), with normal and shear components rn and rs;
Du = u+ � u� is the complex-valued displacement discontinuity, and u� ¼ u�x þ iu�y are the limit values
of the displacements (in the global coordinate system) when the contour is approached from its left
and right sides, respectively. For a finite domain containing only holes and perfectly bonded inclusions,
we have
DuðzÞ ¼
0; z 2 Cp;

uðzÞ; z 2 Ce [ Ch:

�
ð6Þ
The real-valued constants a1 and a3 are combinations of elastic constants from different sides of the bound-
aries and, for each individual inclusion j, are defined as
a1j ¼
1

2lp
j
� 1

2lm

; a3j ¼
1þ jp

j

2lp
j

� 1þ jm

2lm

: ð7Þ
For holes and the finite boundary, they are
a1 ¼
1

2lm

; a3 ¼
1þ jm

2lm

: ð8Þ
Based on the principle of superposition, each individual integral operator Kk (k = 1, . . . , 4) in (5) is decom-

posed into two operators KðiÞ
k and KðeÞ

k as
Kkf ðzÞ ¼ KðiÞ
k þ KðeÞ

k

� 

f ðzÞ; ðk ¼ 1; . . . ; 4Þ; ð9Þ
where KðiÞ
k is defined over all internal boundaries Ci = Cp [ Ch and KðeÞ

j is defined over the external boundary
Ce; KðiÞ

k can be further decomposed as
KðiÞ
k f ðzÞ ¼

XNp

j¼1
Kp

kj þ
XNh

j¼1
Kh

kj

 !
f ðzÞ; ðk ¼ 1; . . . ; 4Þ ð10Þ
with Kp
kj and Kh

kj defined over Cp
j and Ch

j ; respectively.
After substituting (9) and (10) into (5) and (3), the potentials u(z) and w(z) can be written as a superpo-

sition of the potentials for the individual internal boundaries (the individual holes and the individual inclu-
sions) and the potentials arising from the conditions on the external boundary,
uðzÞ ¼ uðiÞðzÞ þ uðeÞðzÞ and uðiÞðzÞ ¼
XNp

j¼1
up

j ðzÞ þ
XNh

j¼1
uh

j ðzÞ;

wðzÞ ¼ wðiÞðzÞ þ wðeÞðzÞ and wðiÞðzÞ ¼
XNp

j¼1
wp

j ðzÞ þ
XNh

j¼1
wh

j ðzÞ;

ð11Þ
where
uðeÞðzÞ ¼ �g½KðeÞ
1 rðzÞ � KðeÞ

2 uðzÞ	; wðeÞðzÞ ¼ �g½KðeÞ
3 rðzÞ þ KðeÞ

4 uðzÞ	;

up
j ðzÞ ¼ �gKp

1jrðzÞ; wp
j ðzÞ ¼ �gKp

3jrðzÞ;

uh
j ðzÞ ¼ �g½Kh

1jpj � Kh
2juðzÞ	; wh

j ðzÞ ¼ �g½Kh
3jpj þ Kh

4juðzÞ	:

ð12Þ
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Notice that in simplifying the above expressions, we have used condition (6) and the assumption that Ch
j is

loaded with constant normal traction pj.

3.2. An embedding method

The idea of this method can be explained from both physical and mathematical points of view. Physi-
cally, we suppose that the original finite region containing the circular inclusions and holes is embedded
into a larger domain whose boundary conditions are fictitious and are constructed such that the physical
conditions prescribed on the boundary of the original domain are satisfied. In our work, the larger fictitious
domain is chosen to be a circular region with center zo, radius Ro, and boundary Co, as shown in Fig. 2. If
the fictitious boundary conditions applied on Co can be defined in such a way that the boundary conditions
prescribed on Ce are satisfied, then, because solutions to linear elasticity problems are unique, the original
problem with the physical boundary Ce is solved as well.

Mathematically, the procedure means that the analytical functions u(o)(z) and w(o)(z) that solve the prob-
lem in the larger circular domain are analytic continuations of the Kolosov-Muskhelishvili potentials for
the problem in the original physical domain. The question of existence of embedding solutions for the gen-
eral case of a finite domain with general types of boundary conditions requires further investigation. In the
present paper, we verify by means of examples that the embedding method works well for problems where
the domain D is square or rectangular.

The potentials u(o)(z) and w(o)(z) for a general problem are not known but can be found from the numer-
ical procedure described in the next section. In the new formulation, after embedding a finite domain con-
taining multiple holes and elastic inclusions into a fictitious circular domain, the external boundary Ce is
replaced by the pseudo circle Co, on which the fictitious boundary conditions are assumed to be prescribed
and expanded into complex Fourier series. Accordingly, the integral operators KðeÞ

k defined over Ce and the
corresponding potentials u(e)(z) and w(e)(z) in (9)–(12) are not present, but are replaced by their counter-
parts defined on Co,
Fig. 2. A rectangular physical domain embedded within a fictitious circular domain.
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KðeÞ
k ! KðoÞ

k ; ðk ¼ 1; . . . ; 4Þ;

uðeÞðzÞ; wðeÞðzÞ ! uðoÞðzÞ; wðoÞðzÞ;
ð13Þ
where the integral operators KðoÞ
k act on the fictitious tractions and displacements, denoted by ro(s) and

uo(s) at s 2 Co, respectively.
The displacement and stress fields inside the fictitious domain enclosed by Co are obtained by substitut-

ing the expressions for the potentials into the Kolosov–Muskhelishvili formulae (2). The tractions
t(z) = tx(z) + ity(z) in the global coordinate system and r(z) = rn(z) + irs(z) in the local coordinate system
along a curve v are calculated based on the components of the stress tensor,
tðzÞ ¼ nðzÞSmðzÞ � nðzÞSdðzÞ; ð14Þ

rðzÞ ¼ SmðzÞ þ
dz
dz

SdðzÞ; ð15Þ
where Sm(z) and Sd(z) are defined as
SmðzÞ ¼
rxxðzÞ þ ryyðzÞ

2
; SdðzÞ ¼

ryyðzÞ � rxxðzÞ
2

þ irxyðzÞ ð16Þ
and where n(z) = nx(z) + iny(z) is the unit outward normal at point z on v, dz=dz ¼ expð�2ibÞ and b is the
angle between the tangent to curve v at point z and the positive x-axis. In this paper, we use r(z) for all
circular boundaries (including all internal boundaries Ci and the pseudo circular boundary Co), and t(z)
for the physical external boundary Ce.

Now suppose that the solution is obtained for a problem in the fictitious circular domain with initial
loading over the external boundary Co represented by truncated complex Fourier series. The displacements
u(z) and tractions t(z) at any point z on the physical external boundary Ce are found in terms of the Fourier
coefficients from the solution of the elastic fields and the relationship expressed in (14) and (16). The ori-
ginal problem is solved if and only if the boundary displacements and tractions over Ce meet the prescribed
displacements upr and tractions tpr:
tprðzÞ ¼ tprx ðzÞ þ itpry ðzÞ; z 2 CðtÞ
e ; ð17Þ

uprðzÞ ¼ uprx ðzÞ þ iupry ðzÞ; z 2 CðuÞ
e ; ð18Þ
where CðtÞ
e and CðuÞ

e denote the parts of Ce where tractions and displacements are prescribed, respectively,
and CðtÞ

e [ CðuÞ
e ¼ Ce. Thus, the initial fictitious loading over the pseudo boundary Co must be adjusted to

satisfy the boundary conditions over the physical boundary Ce.
The coefficients in the Fourier expansion can be computed by adopting an overspecification technique,

the principle of which is to meet the boundary conditions approximately in an average sense (e.g. using least
squares) using a larger set of control points rather than meeting the conditions exactly at specific points, as
adopted in the collocation method (Barnes and Janković, 1999). As a result, a new set of coefficients is ob-
tained by solving the following least squares problem:
min

Z
CðtÞ
e

½tðzÞ � tprðzÞ	2dzþ
Z

CðuÞ
e

½uðzÞ � uprðzÞ	2dz
( )

: ð19Þ
The integral representation of least squares (19) gives the best approximation of the boundary conditions in
the mean. In order to avoid integrations over the finite external boundary Ce, we apply the discrete least
squares condition:
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min
XMt

c

k¼1
½tðzkÞ � tprðzkÞ	2

�����
zk2CðtÞ

e

þ
XMu

c

k¼1
½uðzkÞ � uprðzkÞ	2

�����
zk2CðuÞ

e

8<:
9=;; ð20Þ
where Mt
c and Mu

c are the numbers of control points over CðtÞ
e and CðuÞ

e , respectively. An algorithm based on
QR decomposition (Golub and Van Loan, 1996) is used in this paper to solve the least squares problem
described in (20).
4. Numerical implementation of the embedding method

In the following discussion, we describe in detail the procedure for implementing the embedding method
for the problem of interacting circular holes and elastic inclusions. We first review the solution obtained by
Wang et al. (2003c) for the same problem in a finite circular domain. Based on this solution and the concept
of embedding, an iterative algorithm is developed in combination with an overspecification technique to
solve the problem in a general finite convex domain.

4.1. Complex Fourier series representation

Following Wang et al. (2003c), we use series expansions to approximate the fictitious tractions and dis-
placements on the pseudo circular boundary Co and all other unknown physical boundary functions,
including the unknown tractions on the boundaries of the inclusions and the unknown displacements on
the boundaries of the holes. For notational convenience, we define the following functions
foðsÞ ¼
Ro

s � zo
; f pjðsÞ ¼

Rp
j

s � zpj
; and f hjðsÞ ¼

Rh
j

s � zhj
: ð21Þ
We expand the fictitious tractions ro(s) and displacements uo(s) on Co into truncated complex Fourier series
as
roðsÞ ¼ b0o þ
XMo

m¼1
½b�mof m

o ðsÞ þ bmof �m
o ðsÞ	; s 2 Co; ð22Þ

uoðsÞ ¼ c0o þ
XMo

m¼1
½c�mof m

o ðsÞ þ cmof �m
o ðsÞ	; s 2 Co: ð23Þ
Similarly, the unknown tractions rp
j ðsÞ on the boundaries Cp

j of the inclusions and the unknown displace-
ments uhj ðsÞ on the boundaries Ch

j of the holes are also approximated by truncated complex Fourier series,
rp
j ðsÞ ¼ b0j þ

XMpj

m¼1
½b�mjf m

pj ðsÞ þ bmjf �m
pj ðsÞ	; s 2 Cp

j ; ð24Þ

uhj ðsÞ ¼ c0j þ
XMhj

m¼1
½c�mjf m

hjðsÞ þ cmjf �m
hj ðsÞ	; s 2 Ch

j : ð25Þ
No assumptions are made regarding the numbers of terms in the above series––the values of Mo, Mpj, and
Mhj must be selected for any particular problem, but are arbitrary. The determination of these numbers will
be discussed later.
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Suppose we have an initial distribution of fictitious tractions ro(s) on Co with known coefficients b0o and
b±mo (m = 1, . . . ,Mo) in expansion (22). All the other complex coefficients c0o and c±mo (m = 1, . . . ,Mo), b0j
and b±mj (m = 1, . . . ,Mpj), c0j and c±mj (m = 1, . . . ,Mhj) involved in the above series expansions then need to
be determined. By equilibrium (i.e. the resultant force and moment on the pseudo boundary and the indi-
vidual holes and inclusions are equal to zero), we have
b�1o ¼ b�1j ¼ 0 and b0o; b0j are real: ð26Þ
4.2. Expressions for stresses and displacements

Based on the above global representations of the boundary tractions and displacements, all of the inte-
grals involved in (12) with the replacement condition (13) incorporated can be calculated analytically by
using the Cauchy integral theorem or the residue theorem for the individual closed contours. The details
and the corresponding results for evaluating the integral operators KðoÞ

k rðzÞ, Kp
kjrðzÞ, Kh

kjpj (k = 1, 3), and
KðoÞ

k uðzÞ, Kh
kjuðzÞ (k = 2, 4) are given in Wang et al. (2003c). As a result, we obtain the explicit expressions

for the potentials recorded in Appendix A.
Substituting the expressions (A.1)–(A.6) into (11) and then the resulting expressions for potentials u(z)

and w(z) into the Kolosov–Muskhelishvili formulae (2), we obtain analytic expressions for the displace-
ments and stresses in terms of the coefficients in the series expansions (22)–(25). The latter expressions
are given as a superposition of contributions from each individual boundary. The displacements at point
z are given as
uðzÞ ¼ uðiÞðzÞ þ uðoÞðzÞ and uðiÞðzÞ ¼
XNp

j¼1
upj ðzÞ þ

XNh

j¼1
uhj ðzÞ ð27Þ
with the individual terms u(o)(z), upj ðzÞ, and uhj ðzÞ corresponding to contributions from the pseudo circular
boundary, the individual inclusions, and the individual holes, respectively. Similarly, the expressions for the
stress components Sm(z) and Sd(z) at point z are given as
S�ðzÞ ¼ SðiÞ
� ðzÞ þ SðoÞ

� ðzÞ and SðiÞ
� ðzÞ ¼

XNp

j¼1
Sp
�jðzÞ þ

XNh

j¼1
Sh
�jðzÞ; ð� ¼ m; dÞ: ð28Þ
4.3. A linear algebraic system

Letting point z approach each individual boundary, we obtain boundary values of the displacements
from expression (27). According to the conditions expressed in (6), the displacements are continuous across
the boundary of each inclusion Cp

k ,
uðzÞjz!Cpþ
k

¼ uðzÞjz!Cp�
k
; ðk ¼ 1; . . . ;NpÞ ð29Þ
and the traction obtained by substituting (28) into (15) for the boundary points on Ch
k and Co should equal

the prescribed values, that is
rðzÞjz!Chþ
k

¼ pk; ðk ¼ 1; . . . ;NhÞ; ð30Þ

rðzÞjz!Cþ
o
¼ roðzÞ ¼ b0o þ

XMo

m¼1
½b�mof m

o ðzÞ þ bmof �m
o ðzÞ	

( )
z2Co

: ð31Þ
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The superscript +(�) in the above equations indicates that point z approaches the boundary from the left
(right) side with respect to the direction of travel. The functions expressed in (27) and (28) are regular
expressions so that all limits in Eqs. (29)–(31) can be obtained without involving any singularities.

Substitution of (27) and (28) into (29)–(31) results in a system of Np + Nh + 1 complex algebraic equa-
tions, each of which corresponds to an individual inclusion or hole, or the pseudo circular boundary. We
write these equations in a condensed form containing three sets of equations as
‘XoðzÞ þ
XNp

j¼1

‘Xp
j ðzÞ þ

XNh

j¼1

‘Xh
j ðzÞ ¼ 0; ð‘ ¼ 1; 2; 3Þ; ð32Þ
where ‘ = 1, 2, and 3 represent the equations for the cases in which evaluation point z is on boundaries Co,
Cp, and Ch, respectively. Thus, we have one equation for ‘ = 1, Np equations for ‘ = 2, and Nh equations for
‘ = 3. Each of the terms ‘Xo(z),

‘Xp
j ðzÞ, and ‘Xh

j ðzÞ in (32) is expressed analytically in terms of the basic func-
tions fo(z), fpj(z), and fhj(z) as well as the unknown coefficients in the Fourier representations on the corre-
sponding boundaries. The detailed expressions can be found in Wang (2004) and are omitted here.

A system of linear algebraic equations needs to be constructed from the set of equations (32) to solve for
the unknown coefficients in the series expansions. As mentioned previously, this can be done using an over-
specification technique. For the case where all geometric features are circular, however, we have more effi-
cient ways to reduce Eq. (32) to a linear algebraic system. One way is to expand all the functions f �m

o ðzÞ,
f m
pj ðzÞ, and f m

hjðzÞ and their conjugates into Taylor series with respect to the boundary evaluation point
z 2 Co, Cp

k , or Ch
k around the center zo, z

p
k , or z

h
k of the representative boundary on which z is located such

that the left-hand sides of these equations become truncated complex Fourier series. For example, for ‘ = 1
(z 2 Co) in (32), functions f m

pj ðzÞ and f m
hjðzÞ and their conjugates are expanded into Taylor series around zo as
f m
�jðzÞ ¼

X1
n¼0

ð�1Þn
mþ n� 1

n

 !
R�
j

Ro

� �mþn

f �n
�j ðzoÞ � f mþn

o ðzÞ; ð� ¼ p; hÞ; ð33Þ

f m
�jðzÞ ¼

X1
n¼0

ð�1Þn
mþ n� 1

n

� �
R�
j

Ro

� �mþn

f �n
�j ðzoÞ � f �ðmþnÞ

o ðzÞ; ð� ¼ p; hÞ: ð34Þ
After doing all such expansions, we group the coefficients of the same power of fo(z), fpk(z), and fhk(z) and
set them equal to zero. By moving all terms involving the boundary loadings [i.e. involving the traction pj
(j = 1, . . . ,Nh) and the known coefficients b0o and b±mo (m = 1, . . . ,Mo)] to the right hand side of the equa-
tions, we obtain a linear system for the rest of the unknown complex Fourier coefficients: c0o and c±mo
(m = 1, . . . ,Mo), b0j and b±mj (m = 1, . . . ,Mpj; j = 1, . . . ,Np), and c0j and c±mj (m = 1, . . . ,Mhj; j = 1, . . . ,
Nh). This approach is described in detail by Wang et al. (2003b,c).

Another way to obtain the system is to use a Galerkin method as described by Mogilevskaya and Crouch
(2001). In this approach, both sides of each equation from the resulting complex system (32) are multiplied
by selected weight functions, which are powers of the functions fo(t), fpk(z), and fhk(z) for ‘ = 1, 2, and 3,
respectively, and then integrated over the representative boundary on which z is located. All of the integra-
tions required to implement the Galerkin procedure can be performed analytically. The linear system ob-
tained in this way is exactly the same as that obtained using Taylor series expansions, but the detailed
expressions are omitted here.

It is worth mentioning that the linear system obtained by either approach has a special structure such
that each of the complex coefficients for one circular boundary can be expressed explicitly in terms of
the coefficients corresponding to other circular boundaries. When partitioning the coefficient matrix of
the linear system into N by N blocks (N = Np + Nh + 1), each block on the diagonal of the matrix is itself
a diagonal matrix, which represents the self influence corresponding to either the pseudo external boundary
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or an individual inclusion or hole. This structure makes it efficient to solve the system using a block Gauss–
Seidel iterative method (Mogilevskaya and Crouch, 2001; Wang et al., 2003a). Once the coefficients are
found from the linear system, the displacement and stress fields in the domain enclosed by the pseudo cir-
cular boundary can be obtained directly by substituting these coefficients into Eqs. (27) and (28). As can be
seen from the above discussion, a problem in the circular domain is solved analytically if infinite series are
used in the Fourier representations (22)–(25). Apart from round-off, the only errors are due to truncation of
the complex Fourier series.

4.4. The solution algorithm

We adopt an iterative algorithm to find the coefficients for the fictitious loading on the pseudo circular
boundary such that the boundary conditions on the physical external boundary are satisfied. Once this set
of coefficients has been found, the original problem is solved using the solution for its companion problem
in the circular embedding domain. In each global iteration, a local block Gauss–Seidel iterative algorithm is
first used for computation of the coefficients for each individual inclusion and hole using the coefficients for
the fictitious loading; a least squares problem is then solved to update the coefficients for the fictitious load-
ing to satisfy the physical external boundary conditions.

4.4.1. Least squares formulation

The least squares problem is formulated as follows. We choose Mc uniformly distributed control points
on the physical external boundary Ce, where Mt

c points are on the traction-prescribed part CðtÞ
e and Mu

c

points are on the displacement-prescribed part CðuÞ
e ðMt

c þMu
c ¼ M cÞ. The tractions at the control points

on CðtÞ
e can be written in a real vector as
t ¼ ftxðz1Þ; tyðz1Þ; . . . ; txðzMt
c
Þ; tyðzMt

c
ÞgT: ð35Þ
In expression (28), the stress components SðoÞ
m ðzÞ and SðoÞ

d ðzÞ contributed directly from the pseudo circular
boundary Co can be further decomposed as
SðoÞ
m ðzÞ ¼ SðoÞ

mb ðzÞ þ SðoÞ
mc ðzÞ; SðoÞ

d ðzÞ ¼ SðoÞ
db ðzÞ þ SðoÞ

dc ðzÞ; ð36Þ

where SðoÞ

mb ðzÞ and SðoÞ
db ðzÞ are expressed in terms of the coefficients in the Fourier expansion for the fictitious

tractions, and SðoÞ
mc ðzÞ and SðoÞ

dc ðzÞ in terms of the coefficients in the Fourier expansion for the fictitious dis-
placements. As a result, the traction vector (35) can be written as a summation of three vectors tðoÞb , tðoÞc , and
t(i), where tðoÞc and t(i) can be calculated from the corresponding stress components in (36), (28), and the rela-
tion (14) using the solution for the coefficients in the series expansion. Each component of the vector tðoÞb can
be expressed in terms of the coefficients (b0o and b±mo) for the fictitious tractions using the relation
tðoÞb ðzkÞ ¼ nðzkÞSðoÞ
mb ðzkÞ � nðzkÞSðoÞ

db ðzkÞ; ðzk 2 CðtÞ
e ; k ¼ 1; . . . ;Mt

cÞ: ð37Þ
After separating the real and imaginary parts, we can write (37) in a matrix form as
t
ðoÞ
b ¼ Atx; ð38Þ
where x is the vector composed of the coefficients for the fictitious tractions,
x ¼ fReb�Moo; Imb�Moo; . . . ;Reb�2o; Imb�2o; b0o;Reb1o; Imb1o; . . . ;RebMoo; ImbMoog
T ð39Þ
and the real coefficient matrix At is of size ð2Mt
cÞ by (4Mo � 1). By satisfying the prescribed traction bound-

ary conditions at all control points on CðtÞ
e , we have
Atx ¼ gt; and gt ¼ tpr � tðoÞc � tðiÞ; ð40Þ

where tpr is a vector obtained from (17) for prescribed tractions at the control points on CðtÞ

e .
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Similarly, the real displacement vector for the control points on CðuÞ
e ,
u ¼ fuxðz1Þ; uyðz1Þ; . . . ; uxðzMu
c
Þ; uyðzMu

c
ÞgT
can be written as a summation of three vectors uðoÞb , uðoÞc , and u(i), where uð0Þc and u(i) can be calculated directly
from the corresponding terms in (27), and uðoÞb can be expressed in the following form
u
ðoÞ
b ¼ Aux; ð41Þ
where x is the same as (39) and the coefficient matrix Au is of size ð2Mu
cÞ by (4Mo � 1). By satisfying the

prescribed displacement boundary conditions at all control points on CðuÞ
e , we have
Aux ¼ gu; and gu ¼ upr � uð0Þc � uðiÞ; ð42Þ

where the vector upr is obtained from (18) for prescribed displacements at the control points on CðuÞ

e .
Combining (40) and (42), we have the following overspecified system
Ax ¼ g; where A ¼
At

Au

� �
and g ¼

gt

gu

� �
; ð43Þ
where A 2 Rnp�nq (np = 2Mc and nq = 4Mo � 1), and Ko = np/nq is the overspecification factor. Applying the
discrete least squares condition expressed in (20), we can solve this system via a reduced QR decomposition
(Golub and Van Loan, 1996),
A ¼ QR ðQ 2 Rnp�nq ;R 2 Rnq�nqÞ: ð44Þ

The column vectors of Q are orthonormal to each other and R is an upper triangular matrix. The solution
to (43) is then obtained by solving the following linear system using back substitution
Rx ¼ QTg: ð45Þ
4.4.2. The iterative algorithm

Prior to the iteration process, we need to choose a value for the number of termsMpj (j = 1, . . . ,Np),Mhj

(j = 1, . . . ,Nh), andMo in the Fourier series for each circular boundary. Further discussion on the choice of
these numbers is presented in Section 4.4.3. We also need to initialize the values of all the Fourier coeffi-
cients for each inclusion, hole, and the pseudo boundary; usually, these are set to zero. The solution pro-
cedure is summarized as follows:

1. Construct the matrix A according to (43) and compute its reduced QR decomposition as (44);
2. Give an initial distribution of the fictitious traction ro(z) on the pseudo circular boundary Co with

known coefficients b0o and b±mo (m = 1, . . . ,Mo);
3. Solve for all the other coefficients c±mo (m = 1, . . . ,Mo), b0j and b±mj (m = 1, . . . ,Mpj; j = 1, . . . ,Np), and

c±mj (m = 1, . . . ,Mhj; j = 1, . . . ,Nh) from the linear system obtained in Section 4.3 using a single Gauss–
Seidel iteration;

4. Using the immediate solution obtained in step 3, calculate the vector g in (43) and the product QTg;
5. Solve the linear system expressed in (45) for a new version of the coefficients b0o and b±mo;
6. Repeat steps 3–5 until the largest relative change in the coefficients between two successive iterates is less

than a small number e (say e = 10�8).

It is worth mentioning that from our experience it is not necessary to repeat step 3 in the above algorithm
until the local Gauss–Seidel iteration converges. In order to achieve global convergence in a small number
of iterations with relatively little computational effort, we incorporate the local iterations into the global
iteration and do only one Gauss–Seidel iteration in step 3. In this way the coefficients for the fictitious load-
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ing are updated once updated versions of all other coefficients are available. We find from extensive numer-
ical experiments that this combination of the two iteration processes gives the best performance of the
algorithm.

4.4.3. Determination of the number of terms in the Fourier expansions
The procedure we have adopted to determine the number of terms in the Fourier expansions is similar to

that described by Crouch and Mogilevskaya (2003). We define two reference quantities tref and uref for the
tractions and displacements as
tref ¼ maxðj tpr j; j upr j Em=LeÞ and uref ¼ maxðj upr j; j tpr j Le=EmÞ; ð46Þ
where tpr and upr are the prescribed traction and displacements on the external boundary; Le is the perim-
eter of Ce; Em is the Young�s modulus of the material matrix. Suppose that the Fourier coefficients have
been calculated for fixed values of Mpj, Mhj, and Mo according to the numerical procedure outlined in Sec-
tion 4.4.2. We estimate the errors at each boundary as follows to determine if the current number of terms is
sufficient:

1. For hole j (j = 1, . . . ,Nh), we calculate the tractions from (14) and (28) at a set of uniformly distributed
points on the boundary and compute Dtmax, the magnitude of the largest difference between these values
and the prescribed tractions at these points. If Dtmax/tref 6 di (di is a specified small number, say 10

�6), we
keep Mhj unchanged; otherwise, we increase the value of Mhj by DMhj;

2. Similarly, for inclusion j (j = 1, . . . ,Np), we calculate the boundary tractions from (14) and (28) at
selected points and compute Dtmax between these tractions and those calculated from (24). By checking
if the condition Dtmax/tref 6 di is satisfied, we determine whether to increase Mpj by DMpj;

3. For the finite external boundary Ce, we calculate the boundary tractions and displacements at the control
points over CðtÞ

e and CðuÞ
e , respectively. The errors �t and �u are calculated as
�t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXMt
c

k¼1
½tðzkÞ � tprðzkÞ	2jzk2CðtÞ

e

vuut and �u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXMu
c

k¼1
½uðzkÞ � uprðzkÞ	2jzk2CðuÞ

e

vuut : ð47Þ
For a small specified number do, we check if the condition max(�t/tref, �u/uref) 6 do is satisfied. If not,Mo

is increased by DMo.

In the above error checking procedure, the DM�s (DMhj, DMpj, and DMo) are usually chosen between 1
and 10 depending upon the magnitude of relative errors on the corresponding boundaries. After examining
all the boundaries, if any value of Mpj, Mhj, and Mo has been changed, the iterative process described in
Section 4.4.2 needs to be repeated, and the current values of the Fourier coefficients are used as initial
approximations. In order to avoid repeating the iterative process, we could choose sufficiently large values
of Mpj, Mhj, and Mo at the beginning so that all the boundary conditions are satisfied to within a specified
degree of accuracy after the first stage of iteration. This approach may use more storage for the extra terms
than is actually required, but the procedure is easier to implement and in many cases turns out to be more
computationally efficient. Some experience is required, however, to select values of the M�s that are not
excessively large.
4.5. A modification of the embedding method

In the above formulation of the embedding method, we have two sets of Fourier series defined on
the boundary of the embedding circular domain, one for fictitious tractions and the other for fictitious
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displacements. We observe from the expressions (A.1) and (A.4) that the potentials arising from the bound-
ary conditions of the fictitious embedding domain can be expressed in terms of one series expansion with
the coefficients defined as a combination of the coefficients in the Fourier expansions for the fictitious trac-
tions and displacements. As a result, the solution algorithm described above can be slightly modified to
avoid separate calculation of the fictitious tractions and displacements on the pseudo circular boundary.
Instead, the combined influence of these quantities can be calculated.

In this new formulation, we combine the two sets of coefficients in (22) and (23) for the fictitious trac-
tions and displacements into one set of coefficients q0 and q±m (m = 1, . . . ,Mo),
q�m ¼ m
c�mo

Ro

þ jm

2lm

b�ðmþ1Þo; ðm ¼ 1; . . . ;MoÞ;

qm ¼ ðmþ 1Þ cðmþ1Þo
Ro

þ 1

2lm

bmo; ðm ¼ 0; . . . ;MoÞ:
ð48Þ
The potentials u(o)(z) and w(o)(z) in (12) can now be expressed in terms of the new coefficients q0 and q±m.
The expressions are given in Appendix B as (B.1) and (B.2), reduced from (A.1) and (A.4). As a result, the
displacement function u(o)(z) in (27) and the stress components SðoÞ

m ðzÞ and SðoÞ
d ðzÞ in (28) can also be ex-

pressed directly in terms of the new set of coefficients defined in (48). According to this new formulation,
the solution algorithm is similar to that described in the Section 4.4.2, except that the matrices At and Au are
formulated based on the new expressions for SðoÞ

m ðzÞ, SðoÞ
d ðzÞ and u(o)(z) and that the vectors gt and gu are

expressed as follows instead of as in (40) and (42),
gt ¼ tpr � tðiÞ and gu ¼ upr � uðiÞ: ð49Þ
4.6. Location and radius of the circular embedding domain

Theoretically, the location and the radius of the embedding domain can be arbitrary as long as the phys-
ical solution domain is entirely embedded within it. The center zo of the embedding domain usually coin-
cides with the center of the physical domain. We may, however, encounter computational difficulty if Ro is
too large because in this case the values of the elementary functions fo

±m(z) might be too large or too small
for some large values of m, which may increase the condition number of the system and thus the associated
numerical errors. This problem, however, can be treated by a simple scaling,
f �m
o ðzÞ ¼ Rs

z� zo

� ��m Ro

Rs

� ��m

; ð50Þ
where Rs is chosen such that the pseudo circular boundary is as close to the physical external boundary as
possible; (Ro/Rs)

±m can be incorporated into the coefficients in the series expansions and do not need to be
evaluated directly. As a result, we only need to choose a value for Rs in our computations. According to our
experience, for a rectangular physical solution domain with the half-diagonal length equal to Rd, the opti-
mum value for Ro/Rd is between 1.0 and 1.5. With the scaling employed, however, the ratio Rs/Rd is usually
chosen within a range of 0.7–1.5.
5. Numerical experiments

For a particular problem, the overspecification factor Ko, the ratio of Rs/Rd, and the parameters for
error control e, di, and do are predetermined. In the following numerical experiments, if not otherwise spec-
ified, Ko was taken as 3; Rs/Rd was chosen to be 0.8; the iteration tolerance limit e was taken as 10�8; the
accuracy levels for the internal boundaries and the external boundary, di and do, were taken as 10�6 and
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10�4, respectively. As described in Section 4.4.3, the numbers of terms in the Fourier expansions Mpj, Mhj,
andMo were chosen in such a way that the corresponding boundary conditions are satisfied within the spec-
ified accuracy levels.

5.1. Test examples

5.1.1. One inclusion in a rectangular plate

As the first example, we consider a circular inclusion or hole of radius R centered in a rectangular plate
with height 2h and width 2w. A uniform normal traction tpry ¼ 1 is prescribed on two opposite sides of the
plate (Fig. 3). The elastic properties of the inclusion and matrix are li, mi and lm, mm, respectively. For the
limiting case when li = 0, the inclusion becomes a hole. A state of plane strain is assumed. Our interest here
is the stress concentration factor Kt, which is defined as the maximum absolute value of the normalized cir-
cumferential stress brhh ¼ rhh=tpry :
Kt ¼
maxðmax

z2Cp
j brþ

hhðzÞ j; max
z2Cp

j br�
hhðzÞ jÞ for inclusion;

max
z2Ch

j brhhðzÞ j for hole:

8<: ð51Þ
where the +(�) indicates that point z approaches the boundary from the inside (outside) of the inclusion.
For the right setup in Fig. 3, we consider the following four cases: (i) h/w = 1, R/w = 0.5; (ii) h/w = 1,

R/w = 0.1; (iii) h/w = 2, R/w = 0.5; (iv) h/w = 2, R/w = 0.1. The value of Kt for case (i) was computed by
Isida and Sato (1984) using a method based on series expansions, and by Helsing and Jonsson (2002) using
a collocation boundary element method based on singular integral equations. Isida and Sato reported a
value Kt = 6.3887. Helsing and Jonsson computed the values of Kt using different numbers of discretization
points and gave the converged result of Kt = 6.3886960194568, which was reached at about 2000 discreti-
zation points. We choose the number of terms in the Fourier expansion for the hole equal to 20. The con-
vergence of our numerical results of Kt for cases (i) and (ii) with the increase of the number of terms Mo in
the Fourier expansion for the fictitious loading is shown in Fig. 4. The relative errors are computed using
with a reference value taken as the above value of Kt by Helsing and Jonsson (2002). As can be seen from
Fig. 4, our results converged rapidly with the increase ofMo and, with a relatively small number of terms in
the series expansion, our method gives numerical results with desirable accuracy. The value of Kt for case (i)
is also computed for different values of Rs/Rd between 0.7 and 2.0 other than 0.8 with Mo equal to 30. The
computed value for Kt was 6.388694 in each instance. We computed the other three cases with Rs/Rd taken
Fig. 3. One inclusion (left) or hole (right) in a rectangular plate subjected to uniaxial tension.
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as 0.8 and Mo equal to 40. It is found that the height-width ratio h/w has a significant effect on the stress
concentration factor for relatively large values of R/w. With a decrease of R/w, however, the results become
less sensitive to the ratio of h/w. In the case of R/w = 0.1, the results are very close to those for a hole in an
infinite plate. Most of our computations converged in 20–25 iterations and took only a few seconds on a
1.5 GHz PC.

We also computed the circumferential stress for an inclusion with elastic properties li and mi different
from those of the matrix, lm and mm. A setup with h/w = 1.0 and R/w = 0.5 is considered. We solve the
problem for different values of the inclusion-matrix shear modulus ratio c = li/lm with mi = mm = 0.3.
Fig. 5 shows the variation of the stress concentration factor Kt with c, calculated from (51). When the inclu-
sion is softer than the matrix, the stress concentration factor decreases rapidly with the increase of c; it in-
creases very slowly with the increase of c when the inclusion is stiffer than the matrix.

5.1.2. Multiple holes in a rectangular plate

In this section, we consider several examples that appear many times in the literature but with no uni-
form results obtained. Our computations disprove some published results and provide the corresponding
new benchmark results. The first example is about four small equal-sized holes with radius R placed in a
rhombic pattern in a square plate with side length equal to 2w. Uniform normal traction is prescribed
on two opposite sides of the plate (see Fig. 6). The centers of the holes are located at points (d, 0), (0,d),
(�d, 0), and (0,�d). Using the embedding method, we compute the maximum stress concentration in the
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Fig. 6. Four holes in a square plate subjected to uniaxial tension.
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plate for a setup with R/w = 0.15 and d varying from 2R to 5R, in which some of Helsing and Jonsson�s
(2002) results are considerably different from those by Woo and Chan (1992). To achieve the predetermined
accuracy levels (di = 10�6 and do = 10�4), we use 20 terms of Fourier series for each hole and takeMo = 40
for all cases other than d/R = 5. For the latter case, the number of Fourier terms for the holes is increased
to 30 and Mo to 80. Helsing and Jonsson�s (2002), Woo and Chan�s (1992), and our results are listed in
Table 1. Good agreement can be seen between our results and those obtained by Helsing and Jonsson
(2002). The locations where the maximum stress concentration factor occurs given in Table 1 refer to
the holes centered at (d, 0) and (0,d).

We now consider a more complex hole system involving five symmetrically aligned holes in a rectangular
plate with h/w = 3.125, as depicted in Fig. 7. The plate is subjected to a uniform normal traction in the
vertical direction. The two holes at the top and bottom of the plate have radii R1 = R5 = 0.25w, and the
one in the middle has radius R3 = w/16. The radii of the two other holes, R2 and R4, vary between w/16
Table 1
Results for the stress concentration factor Kt in a square plate containing four holes

d/R Woo and Chan (1992) Helsing and Jonsson (2002) Embedding method

2.0 4.833 4.83267 4.83267 at h1 = 0�
2.5 4.332 4.33144 4.33144 at h1 = 180�
3.0 4.051 4.05049 4.05049 at h1 = 180�
3.5 3.814 3.81430 3.81430 at h1 = 180�
4.0 3.768 3.76936 3.76936 at h2 = 0.2� and 179.8�
4.5 3.860 3.94144 3.94144 at h1 = 0�
5.0 3.905 4.7639 4.7637 at h1 = 0�

Fig. 7. Symmetrically placed holes in a rectangular plate subjected to uniaxial tension.
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and 11w/48. The separation distances are d1 = 5w/6 and d2 = w/3. This problem was solved by Chen et al.
(2000) using a boundary element alternating method, by Meguid (1986) using finite element analysis, and
by Helsing and Jonsson (2002) using a collocation boundary element method. The results for the stress con-
centration factor at the top hole are compared with those obtained using the embedding method in Table 2.
In our analysis, thirty terms of Fourier series were used for all the holes and Mo was taken as 80. It can be
seen from Table 2 that our results agree well with the converged results obtained in Helsing and Jonsson
(2002).

As another example, we solve a problem of two closely spaced holes in a square plate involving both
traction and displacement boundary conditions. As shown in Fig. 8, one of the two vertical sides of the
plate is subjected to uniform normal displacement of 1 mm; the two horizontal sides are traction free. A
state of plane stress is assumed. The side length of the square plate is a = 100 mm, and the two holes
are of the same radius R = 5 mm. The holes are aligned along the horizontal symmetry line and are of
the same distance from the center of the plate, with the minimum separation between them equal to
d = 0.5 mm. The material properties of the matrix are E = 10 MPa, m = 0.3. Kong et al. (2002) analyzed
this problem using their two-dimensional boundary element software THBEM2. They compared their re-
sults for the Von-Mises stress on the boundaries of the holes with the finite element results obtained using
MSC/Marc software and observed a big difference. Skeptical about their results, we solved the problem
using both the embedding method and the finite element software ANSYS. In the embedding approach,
we chose Mo = 80 for the pseudo circular boundary and 40 terms of Fourier series for each hole; in the
finite element analysis, we used 13,844 eight-node quadratic elements of the type PLANE82. The results
Table 2
Results for the stress concentration factor Kt for the top hole in Fig. 7

R2 = R4 Meguid (1986) Chen et al. (2000) Helsing and Jonsson (2002) Embedding method

w/16 3.244 3.115 3.119174 3.119174 at h = 1.5� and 178.5�
w/12 3.204 3.102 3.106916 3.106915 at h = 1.7� and 178.3�
w/6 3.049 2.980 2.996977 2.996976 at h = 3.2� and 176.8�
11w/48 2.981 2.792 2.830921 2.830919 at h = 4.9� and 175.1�

Fig. 8. A square plate with two closely spaced circular holes under given uniform displacement on one side.
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Fig. 9. The Von-Mises stress on the boundary of the right hole in Fig. 8.
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we obtained from two independent approaches are in good agreement, as plotted in Fig. 9. The only dif-
ference we observed occurs in the vicinity of the close-to-touching points of the two holes, where it is very
difficult for the finite element method to get accurate results.

5.2. Large scale computations

In the last example, we model a fiber-reinforced composite with fibers distributed in a square pattern.
The elastic properties of the fiber and matrix material are li, mi and lm, mm, respectively. Plane strain con-
ditions are assumed for the corresponding two-dimensional model shown in Fig. 10. In the left setup of Fig.
10, one inclusion of radius R is located in the center of a square plate of width 2w and R/w = 0.5. Taking
this configuration as a basic cell and reproducing it in a square grid, we obtain a relatively large setup, in
which a square of width 2w contains Np = n2 equal-sized inclusions of the radii 0.5w/n. Two different types
of boundary conditions are considered: (i) edges AB and CD are subjected to uniform tension tpry , BC and
AD are traction free; (ii) edge AB is fixed in the vertical direction and CD is subjected to uniform vertical
displacement, BC and AD remain straight after deformation.

We first compute the maximum stress concentration factor Kt inside the plate under loading condition
(i) for different values of n. We take mm = mi = 0.3 and let the rigidity ratio between the fibers and the matrix
c = li/lm vary from 0 to 10,000, where c = 0 represents the limiting case corresponding to empty fibers
(holes) and c = 10,000 can be used to approximate the case of rigid fibers. Our results for the maximum



Fig. 10. A square plate containing n2 inclusions (n = 1 for the left setup and n = 16 for the right one).

Table 3
Results for the maximum stress concentration factor Kt for different values of c

n Np c = li/lm

0 0.1 0.2 0.5 2 5 10 100 1000 10,000

1 1 6.389 3.940 2.890 1.654 1.150 1.289 1.352 1.422 1.430 1.431
2 4 4.538 3.300 2.598 1.604 1.166 1.320 1.390 1.467 1.475 1.476
4 16 4.580 3.308 2.600 1.604 1.166 1.320 1.390 1.467 1.476 1.477
8 64 4.580 3.308 2.600 1.604 1.166 1.320 1.390 1.467 1.476 1.476
16 256 4.579 3.308 2.600 1.604 1.166 1.320 1.390 1.467 1.476 1.476
32 1024 4.579 3.308 2.600 1.604 1.166 1.320 1.390 1.467 1.476 1.476

Table 4
Results of the maximum stress concentration factor Kt for c = 0

n Nh Embedding method ANSYS

1 1 6.388696 at h = 0� and 180� 6.389
2 4 4.53846 at h = 186.1� 4.538
4 16 4.57954 at h = 185.9� 4.580
8 64 4.57963 at h = 185.9� 4.580
16 256 4.5793 at h = 185.9� 4.579
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values of the stress concentration factor Kt in the plate for different values of c and different numbers of
inclusions are given in Table 3. It is observed that the results tend to limiting values with increased c
and that the results converge with increase of the number of inclusions. For the limiting case of c = 0, more
detailed results for the maximum values of Kt and the corresponding locations on the hole at the left lower
corner are given in Table 4. As an independent check on this case, a finite element analysis using ANSYS
was performed. According to the symmetry of the problem, we model a quarter of the plate using the eight-
node quadratic elements of type PLANE82. A multi-level local refinement of the mesh near the hole at the
corner is adopted. More than 20,000 elements were used for each case to obtain the converged results listed
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Fig. 11. Convergence of the results for the effective properties for (a) traction and (b) displacement boundary conditions.
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in Table 4. For example, the results for n = 8 were obtained using 35,488 elements and for n = 16 using
44,336 elements. The results obtained using the embedding method agree with the ANSYS results.

We also compute the effective properties of the fiber-reinforced composite using the above computa-
tional model. The effective elastic constants are calculated from the average stresses and strains inside mate-
rial, which can be obtained directly from the boundary tractions and displacements (see, for example,
Wang, 2004). Taking mi = mm = 0.3, we consider c = 0 and c = 5 for a fiber volume ratio equal to p/16.
The normalized two-dimensional plane strain bulk modulus Keff/Km and Young�s modulus Eeff/Em are com-
puted for two different types of boundary conditions stated above: (i) a traction boundary condition and (ii)
a straight-line displacement boundary condition. The corresponding results are plotted in Fig. 11 for dif-
ferent numbers of fibers. The largest setup contains 1024 fibers or holes. It is observed that the computed
results for the effective elastic constants converge rapidly with the increase of the number of inclusions or
holes for traction boundary conditions and that the results are essentially constant for straight-line dis-
placement boundary conditions. Based on this observation, we conclude that the displacement boundary
conditions are better suited for computation of the effective properties.
6. Concluding remarks

In this paper an embedding method is presented to extend our numerical technique for solving problems
of multiple circular holes and elastic inclusions in a finite circular domain (Wang et al., 2003c) to finite do-
mains with rectangular external boundaries, with application to fiber-reinforced composite and perforated
materials. In a sense, the method can be viewed as a meshless method, because it requires no discretization
of the boundaries. By embedding the solution domain into a fictitious circular domain, all integrals in-
volved in this method are evaluated analytically. The method is capable of providing results of high accu-
racy for relatively low computational cost. With this method, problems of large size that are very difficult to
handle with conventional methods can easily and quickly be solved on a personal computer.
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Refinements and extensions of this method are planned in several respects. The first natural extension is
the incorporation of cracks based on the work reported in Wang et al. (2001, 2003b). Another extension of
the method is to use a fictitious elliptical domain instead of a circle. We expect that an elliptical shape will
be better suited for problems in an elongated domain, e.g. a rectangular domain with large height–width
ratio. We also plan to extend the methodology to three dimensions for modeling particle-reinforced com-
posite materials.
Appendix A. Expressions for potentials

The complex potentials u(z) and u(z) are written by summation of the influence from the pseudo circular
boundary and the individual holes and inclusions as in (11), with each term in (12) given below:
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where g is defined as in (4) and km = (1�jm)/(2lm).



J. Wang et al. / International Journal of Solids and Structures 42 (2005) 4588–4612 4611
Appendix B. Modification of the expressions for potentials

In the modified embedding method, u(o)(z) and w(o)(z) expressed in (A.1) and (A.4) can be reduced
to
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